

Unit 1 Working with 6-Digit Numbers

(1-1) 6-Digit Numbers 6
(1-2) Comparing Numbers
(1-3) Rounding Numbers
(1-4) Addition of 6-Digit Numbers 18
(1-5) Subtraction of 6-Digit Numbers
(1-6) Problem Solving 24
Show Your Turn

Unit 2 Multiplication and Division

(2-1) Multiplication 32
(2-2) Multiplication of 2-Digits by 1-Digit 34
(with regrouping)
(2-3) Multiplication of 2-Digits by 2-Digits 37
(2-4) Division 39
(2-5) Division up to 3-Digits by 1-Digit 42
(2-6) Understanding Factors and Multiples 45
(2-7) Problem Solving 47
Show Your Turn 48

11 15 214839424547

Unit 3 Fractions

(3-1) Equivalent Fractions 52
(3-2) Comparing Fractions 55
(3-3) Adding and Subtracting Fractions 58
Show Your Turn

Unit 4 Measurement

(4-1) Length Measuring Units 66
(4-2) Measuring Perimeter 68
(4-3) Measuring Area 71
Show Your Turn 73
Unit 5 Geometry and Graphs
(5-1) Points and Lines 76
(5-2) Measuring Angles 78
(5-3) Pictographs 80
(5-4) Bar Graphs 81
Show Your Turn 84

Working with
6-Digit Numbers

- Vocabulary

- 6-Digits
- Hundred thousands (100 thousands)
- Ten thousands (10 thousands)
- Thousands
- Thousands family
- Ones family
- Standard form
- Word form
- Expanded form
- Place value
- Greater than
- Less than
- Equal to
- Ascending order
- Descending order
- Regrouping
- Rounding
- Add
- Addend
- Sum
- Subtract
- Minuend
- Subtrahend
- Difference

O Objectives

- Read and write numbers up to 6-digits.

- Extend 6-digit numbers into expanded form.
- Determine place and value of numbers up to 6-digits.
- Compare 6-digit numbers.
- Order numbers in an ascending and descending order.
- Round numbers to a specific place value.
- Add numbers up to 6-digits.
- Subtract numbers up to 6-digits.

(1-1) 6-Digit Numbers

- Standard Form: 564,378
- Word Form:

Five hundred sixty four thousand, and three hundred seventy eight.

- Expanded Form: $500, \underbrace{000+60,000+4}, 000+30 \underbrace{0+70+8}$

Thousands Family

(Note the following:

- Each number is called a 'digit'. The number 564,378 has 6-digits.
- Every 'Family' of numbers is divided into 3 digits by a comma.
- Each number increases ten times with each shift to the left. (Add a "0" with each move to the left).

Position	Value			
564, 378				
Ones	Ones	8	(8×1)	
Tens	Tens	70	(7×10)	Ones
Hundreds	Hundreds	300	(3×100)	Family
Thousands	Thousands	4,000	(4×1000)	
10-Thousands	10-Thousands	60,000	$(6 \times 10,000)$	Thousands
100-Thousands	100-Thousands	500,000	$(5 \times 100,000)$	Family

- Count the beads and write the number.

743,059

357,350

- Write the correct number in the blanks.

473,986	. 473	thousand, and986
340,642	340	thousand, and 642
19,548	1.9	thousand, and548.
761,398	76.1	thousand, and...... 398

- Match the following sentences to their corresponding numbers.

Five hundred twenty six thousand and eight hundred thirty seven

Two hundred ninety one thousand and six hundred twenty four

Eight hundred fifty thousand and nine hundred two

Sixty eight thousand and one hundred two

One hundred sixty eight thousand and three hundred fifty

- Write each number in word form.

763,268 Seven hundred sixty three thousand, and two hundred sixty eight.

19,305 Nineteen thousand and theree hundred five
284,000 Two hundre.d eighty. four th.ousand
738 Seven.hundred thirty. eight
(Write the value of the digit in the place named.

$\begin{aligned} & 397,523 \\ & \text { (thousands) } \end{aligned}$	$\underset{\substack{103,482 \\ \text { (10-thosandsss) }}}{ }$	$\underset{\text { (tens) }}{987}$	$\begin{gathered} 361,590 \\ \text { (100-thousands) } \end{gathered}$
7,000	. 0	20.	300,000.
$\underset{\text { (ones) }}{623,041}$	734,642	$\underset{\substack{200-\text { thousands }}}{256,788}$	$\begin{gathered} \text { (10-thousands) } \\ \text { (183 } \end{gathered}$
1.	600	200,0.00	20,000.

- Find the correct answers.
(Circle the number that has a 4 in the10-thousands place. 578,879 643,201 982,884 986,109
- Circle the number that has a 6 in the tens place.
197,356 961,798 646,646 723,463

O Circle the number with a 2 in the 100-thousands place.
273,109 763,281 874,139 342,558

O The value of the number 7 in 137,942 is 700,000
$7,000700 \quad 70,000$

- Write each number in expanded form.

(. $468,375=400,000+60,000+8,000+300+70+5$

(265,080 $=7,00,000+60,000+5,000+000+80$
(-) $45,125=40,000+5,000+100+20+5$
($108,942=100,000+00,000+8,000+900+40+2$
(- $64,765=60,000+4,000+7,00+60+.5$
(Look at the following digits: $6,7,0,5,3,4$.

- Write the greatest number possible using all the digits above. 765,430
- Write the smallest number possible using all the digits above.

$$
34,567 \ldots \ldots . . .034,567
$$

- Choose one of the numbers and write its expanded form.

Seven hundred sixty. five .thousand, and four .hundred thirty

To Compare the numbers 641,293 and 643,183 , line up the numbers according to their place value, then start comparing them from the left.

In this case, the 100 -thousands and 10 -thousands digits are the same. Therefore, look at the thousands place. Since 1 thousand is smaller than 3 thousand, 641,293 is less than 643,183

641,293643,183

641,293 is Less than 643,183
(Compare each pair of numbers. Use these symbols:

1
469,295

449,876
(2) 534,672

354,672

3
67,867

96,759

341,555

41,555

- Ordering numbers in ascending and descending order.

O Ascending Order:

Is to write the numbers from the smallest to the greatest.

$\begin{array}{lllll}213 & 230 & 245 & 277 & 291\end{array}$

O Descending Order:

Is to write the numbers from the greatest to the smallest.

$$
\begin{array}{lllll}
291 & 277 & 245 & 230 & 213
\end{array}
$$

- Look at the following numbers. Analyze, compare and answer the following questions.

156,083	508,631	306,815

The biggest number is 508,631
The smallest number is $\ldots 156,083$
The ascending order is

$$
156,083 \quad \text { 183,650 } \quad 306,815 \quad \text { 508,631 }
$$

Write the value of number 5 in each number according to its position.

$1 \underline{5} 6,083$	50,000	$\underline{508,631}$	500,000
$306,81 \underline{5}$	5	$183,6 \underline{5} 0$	50

- Look at the following numbers. Analyze, compare and answer the following questions.

The biggest number is 787,736

- The smallest number is 63,478
- The descending order is

- Write the value of number 7 in each number according to its position.

$\underline{7} 89,136$	700,000	$24 \underline{Z}, 624$	7,000
$63,48 \underline{7}$	7	$456,8 \underline{2}$	70

- (1-3) Rounding Numbers

We round numbers up to estimate the closest number of a possible answer.

Example: how many students are there in your school? You may not know the exact number of students, but you can estimate a close answer.

How can I round
276,341 to the
nearest 10-thousands?

Step 1: find the place that I am rounding to.
Step 2: look at the digit to the right of this place.
Step 3: if the digit is less than 5 , leave the digit in the rounding place as it is.
If the digit is 5 or greater add 1 to the digit in the rounding place.
O Step 4: change the digits to the right of the rounding place to zeros.
(0) Round the numbers to the underlined place value.

- 6,302

O 1,018

- 22,356537,924

O 400,400

- Round the numbers to the nearest place value given.

(0) Match each number to its nearest 100 -thousands place.
(745,678
(Round 330,648 to:
- the nearest 100,000
- the nearest 10,000
- the nearest 1000
- the nearest 100
the nearest 10
- Raneem is investigating the 5 longest rivers in the world. She searched on Wikipedia and made the following list.

Length

- Amazon River 6,992 km
Nile River6,853 kmYangtze River6,300 km
- Mississippi River6,275 km
- Yenissei River5,539 km

Raneem wants to simplify the list without changingthe order of the list, what should she do?

Round to the nearest hundreds
$7,0,0.0$6.900
\qquad6.,3.0.0
6300

\qquad5.,5.0.0$6 ., 0.00$
\qquad
Round to the nearest thousands 7,0.0.0.

7,000

- $\quad . \quad 6 ., 0.0 .0$

6,000
6.,0.0.0

- \int (1-4) Addition of 6-Digit Numbers

$\begin{array}{r} \text { Add the ones } \\ 674,683 \\ +294,348 \\ \hline 1 \end{array}$	$\begin{array}{r} \text { Add the tens } \\ 10 \\ 674,683 \\ +294,348 \\ \hline 31 \end{array}$	Add the hundreds 1111 $\begin{array}{r} 674,683 \\ +294,348 \\ \hline, 031 \end{array}$
Add the thousands $\begin{array}{r} 1011 \\ 674,683 \\ +294,348 \\ \hline 9,031 \end{array}$	$\begin{gathered} \text { Add the } 10 \text { - thousands } \\ \begin{array}{c} 10111 \\ 674,683 \end{array} \\ +294,348 \\ \hline 69,031 \end{gathered}$	Add the 100- thousands 1 101 $\begin{array}{r} 674,683 \end{array} \leftarrow \text { addend } \text { a }$

- Add.

$\begin{array}{r} 827,353 \\ +\quad 42,646 \\ \hline \end{array}$	$\begin{array}{r}878,065 \\ +139,863 \\ \hline\end{array}$	$\begin{array}{r}535,142 \\ +313,534 \\ \hline\end{array}$
869,999	917,928	848,676
1,473	877,546	365,479
+6,239	+125,982	+ 41,078
7,712	903,528	406,557

O Add.

36,934+246,208=

246,208
$+36,934$
283,142

$432,872+425,298=$
432,872

+ 425,298 858,170
- Add and circle the answer that is closer to your sum.

Show your work

$375,895+37,564=$

a) 450,000
b) 420,000
C) 400,000
$95,568+265,348=$
a) 300,000
b) 350,000
c) 400,000
$\begin{array}{r}375,895 \\ +\quad 37,564 \\ \hline 413,459\end{array}$
265,348
$+\quad 95,568$
360,916
$786,578+43,876=$
a) 800,000
b) 880,000
c) 900,000

4

135,588+784,456 =
a) 900,000
b) 950,000
c) 920,000

786,578
$+\frac{43,876}{830,454}$
135,588
$+784,456$ 920,044

- Add.

508,890
935,846
$+938,019$

2,382,755

Your Work

- Find the suitable place value to round the following
numbers, then sum.
$610,283+947+35,718=$

646,948
$+647,000$
1,293,948

- Find two 6-digit numbers that when adding them together the total sum is 487,210 . 200,000

- (1-5) Subtraction of 6-Digit Numbers

Subtract the ones

702,714
$-349,673$
1

Subtract the thousands
Subtract the 10-thousands

$$
\begin{array}{r}
6912611 \\
702,714 \\
-349,673 \\
\hline 53,041
\end{array}
$$

Subtract the tens

6.11
702,714
$-349,673$
41

702,714

$$
\text { - } 349 \text {, } 673
$$

$\begin{array}{r}-349,673 \\ \hline 3,041\end{array}$

$$
3,041
$$

$$
702,714
$$

6912 6 困

702,714
$-349,673$
353,041
Minuend
Sifference

Note that 34-20=14, and 20+14=34
so to check your answer:

Inverse operation
11 1 1
349,673
+353,041
702,714

- Subtract.

- Subtract, then check.

- Subtract.
$783,587-488,873=294,714$
$363,742-98,134=\quad 265,608$
- Find the sum or the difference.

8,289 + 7,146
15,435

- What two numbers have the difference of 112,346 ?

- AI Bireh is a recycling center where people can take plastic, glass, and paper to be recycled. Look at the table below and find out how many kilograms is the total of all materials together that AI Bireh was able to collect at the end of the year.

Material	Kilograms to be recycled
Plastic	78,975
Glass	187,951
Paper	56,162
Total	$\mathbf{?} 323,088$

- Mariam has a bank account with a total of 36,086 JOD. She withdrew 15,347 JOD to pay for a new car. How much money does she have now in her bank account?

36,086

- 15,347

20,739 jds

- A school has 11,478 students. If there are 1,259 students in the fourth grade, approximately how many students are in the other grades?

11,478

- 1,259

10,219

- Anas, Ayman, and Emad traveled to Japan to participate in a marathon.
The total distance of the marathon was 100,000 meters. Anas got tired and stopped running at the 67,800 - meter mark. Ayman wasn't able to continue pass the 76,950 -meter mark, and 100,0000 crossed the finish line.

Who was closer to the finish line, Anas or Ayman?
Ayman

- Samir wants to buy a new car and has a budget of 23,200 JOD? He likes two cars, one white that costs 23,187 JOD and one blue for 23,987 JOD. Which car will Samir buy? Why do you think he chose that

23,200
23,200 car over the other one?

- A school library has 21,486 books. They received a donation of 1,543 books. How many books are now in the library approximately?
- 1,543

a) 24,000
b) 23,000
c) 23,500
23,029

Show Your Turn

- Form two 6-digit numbers without repeating digits in each one using ($0,8,1,7,3,5$).

1

 875.310 and \qquad 130,7582 Write each number in word form.
.eight hundred s.seve...ty.five. \qquad one h. hundred thirty. thousand and. \qquad .thous.and and three hundred ten......seven. hundred fifty. eight. \qquad
3 What is the value of 8 in each number?
800,0008

4 Which number is the greatest? 875,310

5 Write one of the numbers in expanded form.

$$
800,0.00+7.0,0.00+5,000+300+1.0
$$

- Round out the numbers in the table below.

Number	Round to the nearest thousands	Round to the nearest hundreds
$\mathbf{7 4 3 , \mathbf { 8 3 } \mathbf { 2 }}$	744,000	743,800
$\mathbf{3 0 8 6 , \mathbf { 1 7 6 }}$	308,000	308,200
$\mathbf{8 3 9 , 8 5 0}$	840,000	839,900

- Write the value of the underlined number.

$$
\begin{aligned}
& 6 \underline{5} 1,683=650,000 \\
& 310, \underline{9} 72=311,000
\end{aligned}
$$

$$
\underline{3} 64,477=400,000
$$

$$
431,543=431,540
$$

(2) Use the symbols $>,<,=$.

- Arrange in ascending order.

- Rearrange in expanded form.
(1) $40,000+9+700,000+0+2,000+50=$ 742,059 $700,000+40,000+2,000+50+9+0$
(2) $2,000+30+90,000+500,000+500+7=$ 592,537

$$
500,000+90,000+2,000+500+630+7=592,537
$$

(0) Write in expanded form.

$$
\begin{aligned}
789,344 & =700,000+80,000+9,000+300+40+4 \\
98,665 & =90,000+8,000+600+60+5 \\
654,909 & =600,000+50,000+4,000+900+00+9
\end{aligned}
$$

- Add or subtract the following numbers.

854,167
-481,959 372,208

141,321
$+\quad 311,606$
452,927

614,012
$-\quad 489,361$
124,651

- Subtract, then check your answers.
975,672

589,862 358,810

507,607

- 21,649

Check your answer: 507,607

485,958
(Find the mistakes then correct them.

- Vocabulary

- Multiplication
- Repeated addition
- Factor
- Product
- Factor Tree
- Multiple of a number
- Division
- Dividend
- Divisor
- Quotient
- Remainder

- Multiply numbers of 3-digits by 1-digit using different methods.
- Solve multiplication and division problems in given contexts.
- Identify multiples and factors.
- Use patterns to multiply digits that are multiples of 10.
- Divide numbers of 3-digits by 1-digit.
\qquad (2-1) Multiplication

Multiplication is repeated addition.

$$
3 \times 4=4+4+4=12
$$

(3 times 4)

(3 groups of 4)

6 (Factor)
$\times 7$ (Factor)
42 (Product)

Find the 6-row
Find the 7 -column
The product is where the 6 -row and the 7 -column meet.

x	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

- Find the patterns.
$8 \times 1=8$
$8 \times 10=80$
$8 \times 100=800$
$8 \times 1,000=8,000$

What pattern do you
notice?
What about 8×20 ?

- Multiply.

4	9	6	7	10	30	200
$\begin{array}{r} \\ \times 6 \\ \hline\end{array}$	$\times 3$	$\times 6$	$\times 5$	$\begin{array}{r} \\ \times 2 \\ \hline\end{array}$	$\begin{array}{r} \\ \times 3 \\ \hline\end{array}$	
24	27	36	35	20	90	800

- Example.

Step 1

34
$\times \quad 2$

Step 3
Multiply 2
by 4 ones
($2 \times 4=8$)
$\begin{array}{r}34 \\ \times \quad 2 \\ \hline 8\end{array}$

Step 2
Arrange digits in
34 columns according $\times 2$ to place value

- Multiply.

- - (2-2) Multiplication of 2-Digits by 1-Digit (with regrouping)

57
$\times \quad 9 \begin{array}{r}(9 \times 7=63) \\ \hline\end{array}$ regroup 6

$$
\begin{array}{r}
57 \\
\times \quad 9 \\
\hline 513
\end{array}
$$

(O) Find the product.

- Multiplication of 3-Digits by 1-Digit

3	
538	Multiply 4
$\times \quad 4$	by 8 ones
$\times 2$	$(4 \times 8=32)$
2	Regroup

$\begin{aligned} & 13 \\ & 538 \end{aligned}$	Multiply 4 by 5 hundreds
$\times 4$	($4 \times 5=20$ hundreds)
2152	($20+1=21$ hundreds)
	Regroup

538 Multiply 4 by 5 hundreds
$\times 4(4 \times 5=20$ hundreds $)$
2152 (20+1 = 21 hundreds)
Regroup

13	
538	Multiply 4 by 3
tens	
$\times \quad 4$	$(4 \times 3=12$ tens $)$
52	Add 1 $(12+3=15$ tens $)$ Regroup 1

$\begin{array}{r}\times \quad 4 \\ \hline 2152\end{array}$

- Practice.

(Find the missing numbers.

($-\quad$ (2-3) Multiplication of 2-Digits by 2-Digits

1	First, multiply 3×54
54	(3x4=12) regroup 1
$\times 23$	so, $3 \times 54=162$
162	

1	Then, multiply 20×54, and
54	put the result underneath
$\times 23$	162.
162	so, $20 \times 54=1080$
1080	

Finally, add the partial products

1	1
54	162
$\times 23$	+1080
162	1242
+1080	
1242	

(Multiply.

43
$\times 21$
43
+860
903

41
$\times 33$
123
+1230
1,353

89
$\times 54$
356
+4450
4,806

73
$\times 40$
00
$+\quad 2920$
2,920

79
$\times 81$
79
$+6,320$
6,399

86
$\times 62$
172
+5160
5,332

- Partial Product method.

Find $\begin{array}{r}41 \\ \times 23\end{array}$

- Step 1: multiply one digit at a time to get the product.
- Step 2: list all the partial products.
- Step 3: add them all together.

41
$\times 23$

$\left.\begin{array}{r}3 \\ 120 \\ 20 \\ 800 \\ 943\end{array} \begin{array}{l}3 \times 1=3 \\ 3 \times 40=120 \\ 20 \times 1=20 \\ 20 \times 40=800 \\ \text { Add the partial products to get the answer }\end{array}\right\}$ Multiply by ones
Multiply by tens

(0) Find the product.

Your Work

- Choose one of the numbers below and multiply.

$\mathbf{6 5 7 \times 9 \mathbf { 8 }}$	$\mathbf{5 3 7 \times 3 \mathbf { 5 }}$	$\mathbf{2 4 5 \times 2 \mathbf { 9 }}$	$\mathbf{9 4 \mathbf { 3 \times 4 8 } \mathbf { 8 }}$
$=$	$=$	$=$	$=$
64,386	18,795	7,105	45,264

© -
 (2-4) Division

Division is the opposite of multiplication.

- since $3 \times 6=18$
since $4 \times 7=28$
then $18 \div 3=6$
then $28 \div 4=7$
and $18 \div 6=3$
and $28 \div 7=4$

7

divisor $\rightarrow 5 \longdiv { 3 5 }$ dividend

- Using the multiplication table, find the number 35 in the -5row, the quotient is the number at the beginning of the

\mathbf{x}	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	10	12	14	16	18
3	0	3	6	9	12	15	18	21	24	27
4	0	4	8	12	16	20	24	28	32	36
5	0	5	10	15	20	25	30	35	40	45
6	0	6	12	18	24	30	36	42	48	54
7	0	7	14	21	28	35	42	49	56	63
8	0	8	16	24	32	40	48	56	64	72
9	0	9	18	27	36	45	54	63	72	81

- Find the missing numbers.

$$
3 \times 6=18 \quad, \quad 6 \times 3=18, \quad 18 \div 3=6, \quad 18 \div 6=3
$$

$$
7 \times \underline{6}=42 \quad, \underline{6} \times 7=42, \quad 42 \div 7=\underline{6} \quad, \quad \underline{42} \div 6=7
$$

$$
\underline{5} \times 9=45,9 \times \underline{5}=45, \quad 45 \div \underline{5}=9, \quad 45 \div 9=\underline{5}
$$

- Use the multiplication table to find the answer.

$$
\begin{aligned}
& 05 \\
& 7 \longdiv { 3 9 } \\
& -\frac{35}{4} \longleftarrow \text { remainder }
\end{aligned}
$$

Number 7 goes into 39 five times

$$
39 \div 7=5 \mathrm{r} 4
$$

$$
\begin{array}{r}
06 \\
4 \sqrt[26]{26} \\
-\frac{24}{2} \\
\longleftarrow \quad \text { remainder }
\end{array}
$$

Number 26 can't be divided by 4 evenly (not a multiple of 4) 4 goes into $\mathbf{2 6}$ six times

$$
26 \div 4=6 \text { r2 }
$$

- Divide.

Your Work

How many sevens into 45?

7 goes into 45 six times

How many fives into 36 ?

5 goes into 36 seven times

-
 (2-5) Division up to 3-Digits by 1-Digit

Steps to long division to find $856 \div 4$

First find $8 \div 4$	Multiply 2x4=8 Subtract 8-8=0 Bring down 5	Divide $5 \div 4=1$ Multiply 1x4=4 Subtract $5-4=1$ Bring down 6	Divide 16 $\div 4=4$ Multiply $4 \times 4=16$ Subtract 16-16=0
2	2	21	214
$4 \longdiv { 8 5 }$	4856	4856	$4 \longdiv { 8 6 }$
8	-8^{7}	-8	-8
	05	$\begin{array}{r} 05 \\ -\quad 4 \\ \hline \end{array}$	$\begin{array}{r} 05 \\ -\quad 4 \\ \hline \end{array}$
		16	$\begin{array}{r} 16 \\ -\quad 16 \\ \hline \end{array}$
			0

The answer is $\mathbf{2 1 4}$ with no remainder

- Divide.

When there are zeros at the right of the dividend, you can simply divide the non-zero digits and then add the zeros.

Example:

$$
900 \div 3=300
$$

$$
\begin{array}{r}
9 \div 3=3 \\
8000 \div 2=900 \div 3=300 \\
8 \div 2=4
\end{array}
$$

- Divide.

$160 \div 4=40$	$12,000 \div 3=$ 4,000 $630,000 \div 7=$ 90,000	$25,000 \div 5=$

O Challenge: Can you find the pattern?
($100 \div 5=20$
($1,000 \div 50=$

$$
100 \div 50=2 / 20
$$

($10,000 \div 500=$
$1000 \div 500=2 / 20$
O $100,000 \div 5,000=$
$1,0000 \div 5,000=2 \quad / 20$
The pattern is that you can take a way the zeroes if they are at the end of the divisors and diviclend.

- Fill in the missing numbers.

$$
\begin{aligned}
& 18 \\
& 5522 \\
& -5 \\
& \hline 42 \\
& -40 \\
& \hline R 2
\end{aligned}
$$

-3
-03
$-\quad \begin{array}{r}0 \\ R ~ 0\end{array}$
$\begin{array}{r}25 \\ 2651 \\ -4 \\ \hline 10 \\ -10 \\ \hline \text { R } 1+\end{array}$

Your Work

(-) Divide: $26000 \div 2=$Write a 3-digit number that can be divided by the number 6 with NO remainder, and then finish the long division.

$$
\frac{30}{036}
$$

(2-6) Understanding Factors and Multiples

Factors are numbers that you can multiply to get a product. We can visually represent them in a diagram called a Factor Tree.

Example:

The factors of 45 are:
$5 \times 3 \times 3$
If you multiply $5 \times 3 \times 3$ you get 45 .

The factors of 24 are:

(2) (2)

Factor Tree of 72 are:

The multiple of a number is the product from multiplying a number with a whole number.
Therefore, the multiple of a number is a skip counting number.
To find the first five multiples of 7 :

$$
1 \times 7=7 \quad 2 \times 7=14 \quad 3 \times 7=21 \quad 4 \times 7=28 \quad 5 \times 7=35
$$

The first five multiples of 7 are: $7,14,21,28,35$
(Circle the numbers that are multiples of 7 .
1 (7) 14 (21 27 (35

- Circle the numbers that are multiples of 8.

38	40	45	49	64	72	81

- Find five multiples of 6 .

$$
.1 .2 \ldots, .24 \ldots . .3 .0, ~ .3 .6 .
$$

(Are multiples of 4 always even? Explain.
-yes, because.all.multiples of.4. can - be divided by. 2. with nọ remạ!

- Are multiples of 3 always odd? Explain.

No., multiples of 3.are only .odd when .they multiplied b. by. . an.o.d.remainder..
\qquad

1 Joud has 23 apples in a basket. Aya has 3 times more apples than Joud. How many apples does Aya have?

$$
23 \times 3=69
$$

2 Zein planted 20 rows of cabbage in her yard. In each row there are 12 plants. How many cabbage plants did she plant?

$$
20 \times 12=240
$$

3 Ruba bought 126 handbags to be sold at her stores. She owns 3 stores. How many bags will each store get?

$$
126 \div 3=42
$$

4 Omar wants to pack 63 books in 9 boxes. How many books should he put inside each box so that each one has the same amount of books?

$$
63 \div 9=7
$$

Show Your Turn

- Multiply.

- Solve.

- Find the factors of each number.

(Write the missing number in the \square.

- Sammy earns 540 JOD each month. How much money will he have in 6 months?
$540 \times 6=3,240$

Fractions

- Vocabulary

- Fractions
- Numerator
- Denominator
- Equivalent fractions
- Simple fraction
- Simplest form
- Reciprocal
- Inversion

O Objectives

- Identify the numerator and denominator of a fraction.
- Represent a fraction as part of a whole or part of a set.
- Identify simple and compound fractions.
- Determine whether two fractions are equivalent.
- Compare fractions.

- - (3-1) Equivalent Fractions
 What is a fraction?

- A fraction is a part of a set.

$\frac{3}{8}$

- A fraction is a part of a whole.

$\frac{2}{5}$
\longmapsto
numerator (the parts that are
shaded)
denominator (the total number of the equal parts)

Equivalent fractions means that the fractions are equal in value.

$\frac{1}{3}$	$\frac{2}{6}$	$\frac{4}{12}$

- To find the equivalent fractions:
$\frac{1}{2}=\frac{2}{4}$
Multiply the numerator and the denominator by the same number.

We say $\frac{1}{2}$ is in its
simplest form

Divide the numerator and the denominator by the same number.

We say $\frac{1}{3}$ is in its simplest form

- Find the equivalent fraction and shade the graph accordingly.

$$
\frac{10}{16}=\frac{5}{8}
$$

$$
\frac{4}{8}=\frac{2}{2}
$$

$$
\frac{12}{16}=\frac{3}{4}
$$

- Find the equivalent fractions.

$$
\frac{1}{2}=\frac{3}{6} \quad \frac{1}{4}=\frac{2}{8} \quad \frac{2}{3}=\frac{4}{6}
$$

$$
\frac{9}{12}=\frac{3}{4}\left(\frac{10}{12}=\frac{5}{6}\right) \quad \frac{3}{6}=\frac{1}{2}
$$

- Look at the balloons and color the $\frac{1}{4}$ in red.

How many should you color? 3 because $\frac{1}{4}=\frac{3}{12}$

- Draw a model of two equivalent fractions, and another for two non-equivalent fractions.

The equivalent fractions

The non-equivalent fractions

0 $-\quad \mid$
 (3-2) Comparing Fractions

Marwa ate
of a pizza $\frac{2}{8}$

Who ate the most slices?

To compare fractions with like denominators, just look at the numerators.
(Compare using ($<,>,=$).
$\frac{3}{4}>\frac{1}{4}$
$\frac{5}{8}<\frac{7}{8}$
$\frac{2}{5}>\frac{1}{5}$
$\frac{4}{6}<\frac{5}{6}$
$\frac{7}{9}>\frac{4}{9}$

$\frac{7}{10}<\frac{8}{10}$
$\frac{3}{15}<\frac{8}{15} \quad \frac{12}{12}>\frac{9}{12}$

$$
\frac{6}{11}>\frac{5}{11}
$$

$$
\frac{5}{7}=\frac{5}{7}
$$

- Comparing fractions with different denominators.
$\frac{1}{2} \square \frac{1}{4}$
Therefore,
$\frac{2}{4} \square \frac{1}{4}$

$$
\frac{1}{2} \times \frac{2}{2}=\frac{2}{4} \text { using equivalent fractions }
$$

To compare fractions with different denominators you must use the equivalent fraction to get like denominators.
(Compare the fractions using $>,<$ or $=$.

$\frac{1}{3}<\frac{7}{9}$	$\frac{1}{2}<\frac{3}{4}$	$\frac{4}{16}<\frac{4}{8}$
$\frac{2}{9}<\frac{2}{3}$	$\frac{1}{2}>\frac{2}{6}$	$\frac{31}{42}>\frac{26}{42}$
$\frac{3}{5}>\frac{6}{10}$	$\frac{1}{6}<\frac{3}{6}$	$\frac{1}{8}<\frac{3}{4}$

- Arrange $\frac{1}{2}, \frac{1}{3}, \frac{5}{6}$ in ascending order.

You need to find the equivalent fractions.
Place these fractions in ascending order:

$$
\begin{aligned}
& \frac{1}{2}, \frac{1}{3}, \frac{5}{6} \\
& \frac{3}{6}, \frac{2}{6}, \frac{5}{6}
\end{aligned}
$$

Since $\frac{2}{6}<\frac{3}{6}<\frac{5}{6}$, then the ascending order is $\frac{1}{3}, \frac{1}{2}, \frac{5}{6}$.

- Arrange in descending order.

$$
\begin{aligned}
& \frac{1}{2}, \frac{7}{16}, \frac{3}{4}, \frac{5}{8} \quad \longrightarrow \frac{10}{16}<\frac{8}{16}<\frac{7}{16}<\frac{12}{16} \\
& \downarrow \downarrow \downarrow \downarrow \downarrow \\
& \frac{8}{16} \frac{7}{16} \frac{12}{16} \frac{10}{16} \\
& \frac{3}{4}, \frac{7}{12}, \frac{2}{3}, \frac{1}{2} \quad \longrightarrow \frac{9}{12}<\frac{8}{12}<\frac{7}{12}<\frac{6}{12} \\
& \downarrow \downarrow \downarrow \downarrow \\
& \frac{9}{12} \frac{7}{12} \frac{8}{12} \frac{6}{12}
\end{aligned}
$$

(3-3) Adding and Subtracting Fractions

The sum:

$\frac{1}{4}$	$\frac{1}{4}$

$\frac{1}{4}+\frac{1}{4}=\frac{1+1}{4}=\frac{2}{4}$

The difference:

$$
\begin{aligned}
& \frac{1}{5}-\frac{1}{5}-\frac{1}{5} \quad \frac{1}{5} \\
& \frac{4}{5}-\frac{1}{5}=\frac{4-1}{5}=\frac{3}{5}
\end{aligned}
$$

To add or subtract fractions with the SAME denominator, just add up the numerators, and the denominators will stay the same.

- Add the following fractions.
(1)

$$
\frac{3}{8}+\frac{1}{8}=\frac{4}{8}
$$

(2)

$$
\frac{4}{10}+\frac{4}{10}=\frac{8}{10}
$$

(3)

$$
\frac{3}{7}+\frac{2}{7}=\frac{5}{7}
$$

(4)

$$
\frac{4}{13}+\frac{3}{13}=\frac{7}{13}
$$

(5)

$$
\frac{4}{13}+\frac{3}{13}=\frac{7}{13}
$$

6

$$
\frac{9}{18}+\frac{3}{18}=\frac{13}{18}
$$

(7)

$$
\frac{4}{35}+\frac{3}{35}=\frac{31}{35}
$$

(8)

$$
\frac{4}{12}+\frac{7}{12}=\frac{15}{12}
$$

- Subtract the following fractions.

$$
\begin{array}{cc}
\frac{5}{6}-\frac{3}{6}=\frac{2}{6} & \frac{4}{9}-\frac{1}{9}=\frac{3}{9}-\frac{2}{12}=\frac{1}{12} \\
\frac{5}{9}-\frac{3}{9}=\frac{2}{9} \frac{3}{4}-\frac{2}{4}=\frac{1}{4} & \frac{4}{5}-\frac{3}{5}=\frac{1}{5} \\
\frac{14}{18}-\frac{3}{18}=\frac{11}{18} & \frac{10}{12}-\frac{3}{12}=\frac{7}{12}
\end{array}
$$

Find.

$\frac{7}{16}+\frac{12}{16}=\frac{19}{16}$	$\frac{7}{35}+\frac{7}{35}=\frac{14}{35}$	$\frac{9}{40}+\frac{7}{40}=\frac{16}{40}$
$\frac{7}{18}-\frac{3}{18}=\frac{4}{18}$	$\frac{16}{20}-\frac{5}{20}=\frac{11}{20}$	$\frac{11}{24}-\frac{4}{24}=\frac{7}{24}$

When the numerator and the denominator of a fraction are equal, the fraction's value is always 1.

Example.

$$
\frac{3}{3}=1
$$

- Look at the fractions below and find out how many parts are needed to have 1.

$$
\begin{aligned}
& \frac{1}{4}+\frac{3}{4}=1 \\
& \frac{3}{7}+\frac{4}{7}=1 \\
& \frac{2}{5}+\frac{3}{5}=1 \\
& \frac{10}{11}+\frac{1}{11}=1 \\
& \frac{15}{20}+\frac{5}{20}=1
\end{aligned}
$$

(0) Draw your model to show the resulting fraction.

$$
\begin{aligned}
& \frac{8}{10}+\frac{1}{10}=\frac{9}{10} \\
& \frac{8}{10}+\frac{1}{10}=\frac{9}{10}
\end{aligned}
$$

Show Your Turn

- Shade the graph according to the equivalent fraction.

$\frac{6}{8}=\frac{3}{4}$

$\frac{4}{10}=\frac{2}{5}$

$\frac{6}{16}=\frac{3}{8}$

$\frac{4}{12}=\frac{2}{6}$

$$
\frac{12}{14}=\frac{6}{7}
$$

(O) Compare the fractions and write the correct symbol in the box ($>$, < or $=$).

$$
\begin{array}{lll}
\frac{1}{7}<\frac{3}{14} & \frac{3}{8}>\frac{2}{4} & \frac{4}{16}<\frac{4}{8} \\
\frac{2}{9}<\frac{1}{18} & \frac{1}{3}>\frac{4}{15} & \frac{1}{12}<\frac{2}{6} \\
\frac{1}{3}<\frac{2}{3} & \frac{1}{10}<\frac{3}{10} & \frac{2}{5}<\frac{2}{3}
\end{array}
$$

- Add or subtract.
$\frac{6}{16}+\frac{1}{16}=\frac{7}{16}$
$\frac{9}{18}-\frac{4}{18}=\frac{9}{18}-\frac{8}{18}=\frac{1}{18}$
$\frac{5}{24}-\frac{3}{24}=-\frac{20}{24}-\frac{3}{24}=\frac{17}{24}$
$\frac{8}{24}+\frac{6}{24}=\frac{8}{24}+\frac{12}{24}=\left(\frac{20}{24}\right.$

$$
\frac{14}{10}+\frac{3}{10}=\frac{14}{10}+\frac{3}{10}=\frac{17}{10}
$$

$$
\frac{3}{6}+\frac{1}{6}=\frac{4}{6}+\frac{1}{6}=\frac{5}{6}
$$

$$
\frac{7}{36}+\frac{5}{36}=\frac{7}{36}+\frac{2}{36}=\frac{27}{36}
$$

$$
\frac{5}{30}+\frac{4}{30}=\frac{10}{30}+\frac{4}{30}=\frac{14}{30}
$$

$\frac{11}{22}-\frac{5}{22}=\frac{11}{22}-\frac{10}{22}=\frac{1}{22}$

O Which of these sets of fractions are arranged in ascending order?

$$
\begin{aligned}
& \frac{1}{7}, \frac{5}{7}, \frac{3}{7} \\
& \frac{2}{4}, \frac{2}{2}, \frac{2}{8} \\
& \frac{4}{10}, \frac{5}{10}, \frac{3}{10} \\
& \frac{1}{18}, \frac{3}{18}, \frac{4}{18}, \frac{5}{18}
\end{aligned}
$$

- Circle the greatest fraction.

$$
\left(\frac{3}{16}, \frac{3}{4}, \frac{1}{2}\right) \quad\left(\frac{5}{32}, \frac{5}{8}, \frac{5}{6}\right)
$$

(Circle the equivalent fraction.

$$
\left(\frac{4}{7}, \frac{13}{14}\right) \quad\left(\frac{12}{32}, \frac{3}{8}\right)
$$

(Arrange in descending order.

$$
\begin{gathered}
8 \frac{1}{4}, 7 \frac{1}{4}, 7 \frac{6}{9}, 8 \frac{1}{2} \\
\frac{9}{12}, \frac{24}{32}, \frac{2}{4}, \frac{5}{20}
\end{gathered}
$$

Measurement

- Vocabulary

- Length measuring units:
- Kilometer (km) - Meter (m)
- Decimeter (dm) - Centimeter (cm)
- Millimeter (mm)
- Perimeter
- Area
- Compound shapes

- Objectives

- Convert length measurement units.
- Calculate the perimeter of a polygon.
- Calculate the perimeter of a square, a rectangle and compound shapes.
- Use area and perimeter to solve problems.

©
 \square (4-1) Length Measuring Units

- Kilometer (km)

is a length unit used to measure very large lengths; such as lands, streets and distance between cities and countries.

Meter (m)

is used to measure large lengths, such as rooms, heights and playgrounds.

- Centimeter (cm)
is used to measure small lengths, such as paper, book, bag and toys.
- Millimeter (mm)
is used to measure very small lengths, such as insects, paper clips and rubber.

Decimeter (dm)

is a length unit that is a tenth of a meter. Therefore, $10 \mathrm{dm}=1$ meter and is ten times a centimeter. Therefore, $10 \mathrm{~cm}=1 \mathrm{dm}$.

[^0](0) Circle the suitable unit of length.

The length of a car $3 \mathrm{~km}, 3 \mathrm{~m}$

The length of a pen $15 \mathrm{~m}, 15 \mathrm{~cm}$

The length of a glass
$1 \mathrm{dm}, 1 \mathrm{~km}$

- Complete the blank.
- $23 \mathrm{~cm}=\xrightarrow{230} \mathrm{~mm}(23 \times 10=230) 4 \mathrm{~m}=\ldots 400 \quad \mathrm{~cm}(4 \times 100=400)$
- $11 \mathrm{dm}=\underset{1100 _}{ }$ mm ($11 \times 100=1100$) $7 \mathrm{~km}=7000$ m (7x1000=7000)

- Complete.

The length of the lollipop is \qquad cm .

The length of the pencil is $\quad 10 \mathrm{dm}$.

The length of the candy is \qquad mm.

-
 $-\quad$
 (4-2) Measuring Perimeter

Presenting a Perimeter

A perimeter is the distance around a figure.

Calculating a Perimeter

To find the perimeter add the length of each side together.

$$
P=1+1+2+2=6 \mathrm{~m}
$$

Formula

$P=a+b+c$

A perimeter is measured in units of lengths such as centimeters, meters, kilometers, etc.

- Find the perimeter of each shape.

(0) Find the perimeter of each square.

- Find the perimeter of each rectangle.

- Draw a square that has a perimeter of 140 mm .

- Draw a rectangle that has a perimeter of 12 cm .

$$
2 \mathrm{~cm} \begin{gathered}
4 \mathrm{~cm} \\
4 \mathrm{~cm} \\
\hline \mathrm{~cm} \\
\hline
\end{gathered}
$$

-
 \square
 (4-3) Measuring Area

An area is the measurement of a surface. The unit of an area is measured in units of length squared, for example $\mathrm{cm}^{2}, \mathrm{~m}^{2}$

The area of this rectangle is

$$
28 \mathrm{~cm}^{2}=7 \mathrm{~cm} \times 4 \mathrm{~cm}
$$

2 cm

The area of this rectangle is
$6 \mathbf{c m}^{2}=2 \mathbf{c m} \times 3 \mathbf{c m}$

To find the area of a rectangle, use the formula area $=$ length \times width
This formula is often written as
$A=L \times W$
$\mathrm{L}=10 \mathrm{~cm}$
$\mathrm{W}=8 \mathrm{~cm}$
$10 \mathrm{~cm} \times 8 \mathrm{~cm}=80 \mathrm{~cm}^{2}$

The area of a square equals any of its two sides multiplied together.

$$
\begin{aligned}
& A=S \times S \\
& A=7 \times 7 \\
& A=49 \mathrm{~cm}^{2}
\end{aligned}
$$

- Find the area of the following squares and rectangles.

Your Work

- Find the area.

Area $=30$ square $\left(\mathrm{mm}^{2}\right)$

Area $=220$ square $\left(\mathrm{mm}^{2}\right)$

- Convert to the units shown.

$20 \mathrm{~m}=\ldots 200 \ldots \mathrm{~cm}$	$\bullet 49 \mathrm{~m}=\ldots 490 \ldots \mathrm{~cm}$
$67 \mathrm{~m}=\ldots 670 \ldots \mathrm{~cm}$	$89 \mathrm{~m}=\ldots 890 \ldots \mathrm{~cm}$
$13 \mathrm{~m}=\ldots 1300 \ldots \mathrm{~mm}$	$17 \mathrm{~cm}=\ldots 170 \ldots \mathrm{~mm}$
$22 \mathrm{~m}=\ldots . .22 \ldots \mathrm{~mm}$	$31 \mathrm{~m}=\ldots .310 \ldots \mathrm{~cm}$

Akram needs to put a photo in a frame with 15 cm length and 9 cm width. What is the length of the frame?

15 cm

- A square field has a perimeter of 320 meters.

Find out how many meters each side is.
Perimeter= $320 \mathrm{~m}, \mathrm{~S}=$?

$$
320 \div 4=80 \mathrm{~m}
$$

Geometry

and
 Graphs

- Point
- Line segment
- Protractor
- Right angle
- Straight angle
- Perpendicular
- Pictograph
- Axis
- Horizontal
- Line
- Ray
- Acute angle
- Obtuse angle
- Intersecting
- Parallel
- Bar chart
- Vertical

- Objectives

- Identify intersecting, perpendicular and parallel lines.
- Identify and estimate acute, right and obtuse angles.
- Use a protractor to measure the degree of different angles.
- Interpret information from pictographs and bar graphs.
- Make their own bar graph.
(5-1) Points and Lines

Description
A geometric element that has zero dimensions.

A line is a collection of points along a straight path with no end points.
A line segment is a part of a Line segment

Ray

Description	Figure	Symbol
A geometric element that has zero dimensions.	-	P or Point P
A line is a collection of points along a straight path with no end points.	$\overleftrightarrow{A} \quad \vec{B}$	$\overleftrightarrow{A B}$ or $\overleftrightarrow{B A}$
A line segment is a part of a line that contacts every point on the line between its end points.	$\ddot{\mathrm{X}} \quad \overrightarrow{\mathrm{Y}}$	
A ray is a part of a line with a single end point that goes on in one direction.	$\stackrel{\rightharpoonup}{\mathbf{P}}$	$\stackrel{\rightharpoonup}{P Q}$

Less than 90 degrees

Right Angle

An exact 90
degrees

Obtuse Angle
Greater than
90 degrees
and less than
180 degrees

An exact 180 degrees

There are three types of lines.

They have one common point.

They intersect each other at right angles.

Parallel

They do not intersect when both lines go indefinitely in either direction.

- Match each term with the picture it represents.

Intersecting lines

() (5-2) Measuring Angles

To measure angles we need a tool called a 'Protractor'.
Step 1 Place the center point of the protractor on the vertex of the angle.

Step 2 Place the 0 mark on one side of the angle.
Step 3 Read the measure of the angle where
 the other side crosses the protractor, start from 0.

The measure of the angle is 70°.

- Measure the degree of each angle.

- Measure \& Write whether the angles are acute or obtuse.

- Choose the best estimation for the measure of each angle.

30° approx
90° approx
150° approx

25° approx
80° approx
130° approx

30° approx

70° approx

85° approx
90° approx
95° approx

A Pictograph is a way of showing data using images. It makes the data easy to read.
The following table shows the amount and type of animals that a group of children in the fourth grade have.

(Circle the information you can deduct from the picture graph.

- Girls have more cats than boys.
boys have less birds than girls.
- Girls have two parrots.

Yes	No
Yes	No
Yes	No

What is the total of cats?
What is the total of birds? $\quad 7$

- What is the total of parrots? 9
- How many boys are there in the class?
- What another question can you answer by looking at the picture graph?
- Question: How many girls?
- Answer:

14

- \quad (5-4) Bar Graphs

A bar graph is a visual representation that helps organize information easily. The information is drawn into rectangular bars with heights or lengths proportional to the values that they represent. A bar graph is also called a bar chart.

- The fourth grade students did a survey about the animal that they liked the most during their visit to the Ghamadan Zoo in Amman. Observe their results.

Abstract

$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\circ}{6}}$ Favorite Animal

Animals
Monkeys Deer Jaguars Ponies Ostriches

- Note, then explain how to draw.	Animals	Votes
How to draw a bar graph	Monkeys	80
for the table above?	Deer	100
Fill in the table.	Jaguars	80
	Ponies	70
	Ostriches	90

- Use the data from the tally chart to complete the bar graph.

Favorite Fruit

Number of Students

Apples

- Oranges
- Grapes
- Strawberries
- Bananas

- Answer the following questions about the bar graph.

Which is the favorite fruit for most students?
Oranges

- Which is the favorite fruit with the least votes?

Apples
How many students like oranges more than grapes?
$12-3=9$
How many students are there in total?

- Ali asked his classmates what activities they like to do after school.
Note the table then answer the questions.

Activities	Number of students
- Reading	3
- Playing sports	5
- Watching TV	8
- Drawing	4

What is the best activity for most students?

Sports

What is the least activity for most students?

Reading

What is the total of the students?

20

- How many students like watching TV?

8

- How many students like drawing?

Show Your Turn

- Conduct a survey in your classroom about each student's favorite color. Gather the data in a table, and then draw a bar graph.

Information gathering table

[^0]: - $1 \mathrm{~km}=1000 \mathrm{~m}$
 - $1 \mathrm{~m}=10 \mathrm{dm}$
 - $1 \mathrm{~m}=100 \mathrm{~cm}$
 - $1 \mathrm{~m}=1000 \mathrm{~mm}$

